
“Proofs are programs” in MLTT

Pierre-Marie Pédrot

INRIA

TYPES’24

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 1 / 20

The Curry-Howard Credo

Proofs are programs in MLTT!

Beyond obvious.

Proofs are first-class syntactic objects
Extension of the λ-calculus
The equational theory can be derived from β-reduction
Strong normalization and canonicity
No need for post-hoc realizability

MLTT: The Ultimate Synthetic Monistic Curry-Howard System

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 2 / 20

The Curry-Howard Credo

Proofs are programs in MLTT!
Beyond obvious.

Proofs are first-class syntactic objects
Extension of the λ-calculus
The equational theory can be derived from β-reduction
Strong normalization and canonicity
No need for post-hoc realizability

MLTT: The Ultimate Synthetic Monistic Curry-Howard System

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 2 / 20

The Curry-Howard Credo

Proofs are programs in MLTT!
Beyond obvious.

Proofs are first-class syntactic objects
Extension of the λ-calculus
The equational theory can be derived from β-reduction
Strong normalization and canonicity
No need for post-hoc realizability

MLTT: The Ultimate Synthetic Monistic Curry-Howard System

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 2 / 20

A Hint of Heresy

Proofs are programs in MLTT?

On second thought, it is not so clear.

MLTT has uncomputational models
For instance, in Set functions are ZFC functional graphs
Is our Curry-Howard faith grounded in reality?

Nobody expects the MLTT Inquisition!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 3 / 20

A Hint of Heresy

Proofs are programs in MLTT?
On second thought, it is not so clear.

MLTT has uncomputational models
For instance, in Set functions are ZFC functional graphs
Is our Curry-Howard faith grounded in reality?

Nobody expects the MLTT Inquisition!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 3 / 20

A Hint of Heresy

Proofs are programs in MLTT?
On second thought, it is not so clear.

MLTT has uncomputational models
For instance, in Set functions are ZFC functional graphs
Is our Curry-Howard faith grounded in reality?

Nobody expects the MLTT Inquisition!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 3 / 20

The Problem

Our credo is just an external statement!

Proofs are programs in MLTT

What we really want is an internal statement.

“Proofs are programs” in MLTT

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 4 / 20

The Problem

Our credo is just an external statement!

Proofs are programs in MLTT

What we really want is an internal statement.

“Proofs are programs” in MLTT

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 4 / 20

The Problem

Our credo is just an external statement!

Proofs are programs in MLTT

What we really want is an internal statement.

“Proofs are programs” in MLTT

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 4 / 20

Church’s Church

Turns out it is a well-known principle in constructive maths.

The internal Church Thesis

⊢ ∀(f : N → N). ∃p : N. calc f p (CT)

where calc f p means that f is computed by the program p, i.e.

⊢ ∀n : N. ∃k : N. eval p n (f n) k

with eval : N → N → N → N → □ the Kleene predicate

“eval p n v k ∼ the Turing machine p run on n returns v in ≤ k steps.”

In case of allergy to Turing machines, pick any other model.

[For readability, I’ll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 5 / 20

Church’s Church

Turns out it is a well-known principle in constructive maths.

The internal Church Thesis

⊢ ∀(f : N → N). ∃p : N. calc f p (CT)

where calc f p means that f is computed by the program p, i.e.

⊢ ∀n : N. ∃k : N. eval p n (f n) k

with eval : N → N → N → N → □ the Kleene predicate

“eval p n v k ∼ the Turing machine p run on n returns v in ≤ k steps.”

In case of allergy to Turing machines, pick any other model.

[For readability, I’ll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 5 / 20

Church’s Church

Turns out it is a well-known principle in constructive maths.

The internal Church Thesis

⊢ ∀(f : N → N). ∃p : N. calc f p (CT)

where calc f p means that f is computed by the program p, i.e.

⊢ ∀n : N. ∃k : N. eval p n (f n) k

with eval : N → N → N → N → □ the Kleene predicate

“eval p n v k ∼ the Turing machine p run on n returns v in ≤ k steps.”

In case of allergy to Turing machines, pick any other model.

[For readability, I’ll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 5 / 20

Church’s Church

Turns out it is a well-known principle in constructive maths.

The internal Church Thesis

⊢ ∀(f : N → N). ∃p : N. calc f p (CT)

where calc f p means that f is computed by the program p, i.e.

⊢ ∀n : N. ∃k : N. eval p n (f n) k

with eval : N → N → N → N → □ the Kleene predicate

“eval p n v k ∼ the Turing machine p run on n returns v in ≤ k steps.”

In case of allergy to Turing machines, pick any other model.

[For readability, I’ll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 5 / 20

Church’s Church

Turns out it is a well-known principle in constructive maths.

The internal Church Thesis

⊢ ∀(f : N → N). ∃p : N. calc f p (CT)

where calc f p means that f is computed by the program p, i.e.

⊢ ∀n : N. ∃k : N. eval p n (f n) k

with eval : N → N → N → N → □ the Kleene predicate

“eval p n v k ∼ the Turing machine p run on n returns v in ≤ k steps.”

In case of allergy to Turing machines, pick any other model.

[For readability, I’ll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 5 / 20

I am not Making this CT Up
Synthetic Computability

Never suffer with Turing machines again!

The one missing primitive: inspecting the code of a program, a.k.a. CT.

⊢ Π(f : N → N).Σ(p : P). calc f p

“Can we extend Martin-Löf’s Type Theory with CT?”

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 6 / 20

I am not Making this CT Up
Synthetic Computability

Never suffer with Turing machines again!

The one missing primitive: inspecting the code of a program, a.k.a. CT.

⊢ Π(f : N → N).Σ(p : P). calc f p

“Can we extend Martin-Löf’s Type Theory with CT?”

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 6 / 20

I am not Making this CT Up
Synthetic Computability

Never suffer with Turing machines again!

The one missing primitive: inspecting the code of a program, a.k.a. CT.

⊢ Π(f : N → N).Σ(p : P). calc f p

“Can we extend Martin-Löf’s Type Theory with CT?”
P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 6 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 7 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 7 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 7 / 20

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
non-computational, relatively innocuous
MLTT + CT∃ is known to be consistent

(The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Weird consequences: anti-funext, anti-choice, anti-classical logic
Intuitionistic non-choice gives a quote function (N → N) → P
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 8 / 20

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
non-computational, relatively innocuous
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Weird consequences: anti-funext, anti-choice, anti-classical logic
Intuitionistic non-choice gives a quote function (N → N) → P
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 8 / 20

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
non-computational, relatively innocuous
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Weird consequences: anti-funext, anti-choice, anti-classical logic
Intuitionistic non-choice gives a quote function (N → N) → P
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 8 / 20

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
non-computational, relatively innocuous
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Weird consequences: anti-funext, anti-choice, anti-classical logic
Intuitionistic non-choice gives a quote function (N → N) → P
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 8 / 20

Second-hand “Quotes” from Anonymous Experts∗∗

∗∗ All these quotes are a pure work of fiction. Serving suggestion. May contain phthalates.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 9 / 20

Thou Shalt Not Bear False Witness

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 10 / 20

Thou Shalt Not Bear False Witness

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 10 / 20

Thou Shalt Not Bear False Witness

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 10 / 20

“MLTT”

“MLTT” is the extension of MLTT with three quoting primitives.

M,N := . . . | ϙ M | ϛ M N | ϱ M N

Γ ⊢ M : N → N
(quote)

Γ ⊢ ϙ M : P
Γ ⊢ M : N → N Γ ⊢ N : N

(count-steps)
Γ ⊢ ϛ M N : N

Γ ⊢ M : N → N Γ ⊢ N : N
(reflect)

Γ ⊢ ϱ M N : eval (ϙ M) N (M N) (ϛ M N)

These three operations are just the Skolemization of CTΣ!

CTΣ := Π(f : N → N).Σp : P.Π(n : N).Σ(k : N). eval p n (f n) k

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 11 / 20

“MLTT”

“MLTT” is the extension of MLTT with three quoting primitives.

M,N := . . . | ϙ M | ϛ M N | ϱ M N

Γ ⊢ M : N → N
(quote)

Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
(count-steps)

Γ ⊢ ϛ M N : N

Γ ⊢ M : N → N Γ ⊢ N : N
(reflect)

Γ ⊢ ϱ M N : eval (ϙ M) N (M N) (ϛ M N)

These three operations are just the Skolemization of CTΣ!

CTΣ := Π(f : N → N).Σp : P.Π(n : N).Σ(k : N). eval p n (f n) k

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 11 / 20

“MLTT”

“MLTT” is the extension of MLTT with three quoting primitives.

M,N := . . . | ϙ M | ϛ M N | ϱ M N

Γ ⊢ M : N → N
(quote)

Γ ⊢ ϙ M : P
Γ ⊢ M : N → N Γ ⊢ N : N

(count-steps)
Γ ⊢ ϛ M N : N

Γ ⊢ M : N → N Γ ⊢ N : N
(reflect)

Γ ⊢ ϱ M N : eval (ϙ M) N (M N) (ϛ M N)

These three operations are just the Skolemization of CTΣ!

CTΣ := Π(f : N → N).Σp : P.Π(n : N).Σ(k : N). eval p n (f n) k

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 11 / 20

“MLTT”

“MLTT” is the extension of MLTT with three quoting primitives.

M,N := . . . | ϙ M | ϛ M N | ϱ M N

Γ ⊢ M : N → N
(quote)

Γ ⊢ ϙ M : P
Γ ⊢ M : N → N Γ ⊢ N : N

(count-steps)
Γ ⊢ ϛ M N : N

Γ ⊢ M : N → N Γ ⊢ N : N
(reflect)

Γ ⊢ ϱ M N : eval (ϙ M) N (M N) (ϛ M N)

These three operations are just the Skolemization of CTΣ!

CTΣ := Π(f : N → N).Σp : P.Π(n : N).Σ(k : N). eval p n (f n) k

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 11 / 20

“MLTT”

“MLTT” is the extension of MLTT with three quoting primitives.

M,N := . . . | ϙ M | ϛ M N | ϱ M N

Γ ⊢ M : N → N
(quote)

Γ ⊢ ϙ M : P
Γ ⊢ M : N → N Γ ⊢ N : N

(count-steps)
Γ ⊢ ϛ M N : N

Γ ⊢ M : N → N Γ ⊢ N : N
(reflect)

Γ ⊢ ϱ M N : eval (ϙ M) N (M N) (ϛ M N)

These three operations are just the Skolemization of CTΣ!

CTΣ := Π(f : N → N).Σp : P.Π(n : N).Σ(k : N). eval p n (f n) k

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 11 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Convert Now or Face Type Shunning

Where is the type-theoretic fish?

Conversion!

😱 Convertible terms must be quoted to the same code 😱

In particular, quoting must be stable by substitution. How to do that?

Before breaking this unbearable suspense, I need a bit more stuff.

“MLTT” is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → 1 + A is the partiality monad and eval is derived from run
P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 12 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

Wake Up Sheeple!

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

The quoting primitives will only compute on closed deep normal terms

Γ ⊢ M : N → N M cldnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

M cldnf {Γ ⊢ run ⌈M⌉ n k ≡ None}k<k0 Γ ⊢ run ⌈M⌉ n k0 ≡ Some v
Γ ⊢ ϛ M n ≡ k0 : N

(Congruences trivial, similar rule for ϱ.)

This One Weird Trick
Closed terms are stable by substitution.

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 13 / 20

The Basic Model

A straightforward variant of Abel’s style NbE logical relation

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quoting primitives blocked on open terms

dnf (M) M not closed
wne (ϙ M)

(similar for ϛ, ϱ)

... and that’s about it.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 14 / 20

The Basic Model

A straightforward variant of Abel’s style NbE logical relation

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quoting primitives blocked on open terms

dnf (M) M not closed
wne (ϙ M)

(similar for ϛ, ϱ)

... and that’s about it.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 14 / 20

The Basic Model

A straightforward variant of Abel’s style NbE logical relation

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quoting primitives blocked on open terms

dnf (M) M not closed
wne (ϙ M)

(similar for ϛ, ϱ)

... and that’s about it.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 14 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
Weak-head reduction of quoting primitives depends on deep reduction

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

Reduction of ϛ and ϱ additionally require counting steps

Better presented as a step-indexed big-step reduction

M ⇒∗
deep N dnf iff ∃k.M ⇓k N

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.

Weak-head reduction of quoting primitives depends on deep reduction
M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

Reduction of ϛ and ϱ additionally require counting steps

Better presented as a step-indexed big-step reduction

M ⇒∗
deep N dnf iff ∃k.M ⇓k N

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
Weak-head reduction of quoting primitives depends on deep reduction

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

Reduction of ϛ and ϱ additionally require counting steps

Better presented as a step-indexed big-step reduction

M ⇒∗
deep N dnf iff ∃k.M ⇓k N

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
Weak-head reduction of quoting primitives depends on deep reduction

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

Reduction of ϛ and ϱ additionally require counting steps

Better presented as a step-indexed big-step reduction

M ⇒∗
deep N dnf iff ∃k.M ⇓k N

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
Weak-head reduction of quoting primitives depends on deep reduction

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

Reduction of ϛ and ϱ additionally require counting steps

Better presented as a step-indexed big-step reduction

M ⇒∗
deep N dnf iff ∃k.M ⇓k N

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 15 / 20

Well-typed models cannot go wrong

We haven’t assumed anything about the computation model so far.

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r, k ∈ N, M n ⇓k r implies

run ⌈M⌉ n k ⇓ Some r
run ⌈M⌉ n k′ ⇓ None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 16 / 20

Well-typed models cannot go wrong

We haven’t assumed anything about the computation model so far.

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r, k ∈ N, M n ⇓k r implies

run ⌈M⌉ n k ⇓ Some r
run ⌈M⌉ n k′ ⇓ None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 16 / 20

Well-typed models cannot go wrong

We haven’t assumed anything about the computation model so far.

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r, k ∈ N, M n ⇓k r implies

run ⌈M⌉ n k ⇓ Some r
run ⌈M⌉ n k′ ⇓ None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 16 / 20

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
Well-typed “MLTT” terms are strongly normalizing.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 17 / 20

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

Fully formalized in Coq up to one axiom.

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.
We have already implemented an adequate model in the Coq meta.
MLTT contains PRA and the evaluator is primitive recursive.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 18 / 20

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

Fully formalized in Coq up to one axiom.

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.
We have already implemented an adequate model in the Coq meta.
MLTT contains PRA and the evaluator is primitive recursive.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 18 / 20

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

Fully formalized in Coq up to one axiom.

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.
We have already implemented an adequate model in the Coq meta.
MLTT contains PRA and the evaluator is primitive recursive.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 18 / 20

Conclusion

In MLTT, “proofs are programs” in the end

The model is a trivial adaptation of standard NbE models
Essentially fully formalized in Coq
Open terms do not exist, I have met them
What kind of axioms can we cheaply internalize like this?

A lingering doubt
Why was this considered a difficult question?

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 19 / 20

Conclusion

In MLTT, “proofs are programs” in the end

The model is a trivial adaptation of standard NbE models
Essentially fully formalized in Coq
Open terms do not exist, I have met them
What kind of axioms can we cheaply internalize like this?

A lingering doubt
Why was this considered a difficult question?

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 19 / 20

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) “Proofs are programs” in MLTT 12/06/24 20 / 20

